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A B S T R A C T 

Behavior of reinforced concrete beam cannot be captured by elastic damage models 

or elastic-plastic constitutive laws only. When these two models coupled, load deflec-

tion behavior of reinforced concrete can be observed through numerical modeling. 

Thus, using concrete damage plasticity approach in finite element modeling can lead 

researches for sufficient numerical results when compared to experimental tests. In 

order to determine the material damage model of concrete, some laboratory tests are 

required. This paper offers an equation for damage parameter to capture damage be-

havior. In addition, modeling strategies are developed by checking the model sensi-

tivity against mesh density, dilation angle and fracture energy of concrete. Finite el-

ement models are verified by three different experimental tests. In this study 

ABAQUS finite element software is employed to model reinforced concrete beam 

with concrete damage plasticity approach. This study shows that difference between 

the results from numerical models and experimental tests are in acceptable range. 
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1. Introduction 

Constitutive behavior of concrete is very difficult to 
capture by using elastic damage models or elastic plastic 
laws. In elastic damage model irreversible strains cannot 
be captured. It can be seen in Fig. 1(b) that a zero stress 
corresponds to a zero strain which makes damage value 
to be overestimated. On the other hand when elastic 
plastic relation is adopted the strain will be overesti-
mated since the unloading curve will follow the elastic 
slope (Fig. 1(c)). Concrete Damage Plasticity (CDP) 
model which combines these two approaches can cap-
ture the constitutive behavior of experimental unloading 
(Fig. 1(a)) (Jason et al., 2004). 

 

Fig. 1. Elastic plastic damage law (Jason et al., 2004). 

In this model two main failure mechanisms are as-
sumed: tensile cracking and compressive crushing of the 
concrete. The evolution of the yield surface is controlled 
by tensile and compressive equivalent plastic strains. In 
the following sections main assumptions about this 
model will be discussed in detail. In this study, develop-
ing a finite element model along with required parame-
ters is discussed. ABAQUS nonlinear finite element com-
mercial software package is employed. All the modeling 
parameters are validated by experimental results. 

 

2. Material Constitutive Behaviors 

Numerical models for the constituent material prop-
erties are described in this section. 

2.1. Concrete model 

CDP is one of the possible constitutive models to pre-
dict the constitutive behavior of concrete. It describes 
the constitutive behavior of concrete by introducing sca-
lar damage variables. Tensile and compressive response 
of concrete can be characterized by CDP in Fig. 2.  
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Fig. 2. Behavior of concrete under axial compressive (a) 
and tension(b) strength (Abaqus User Manual, 2008). 

As shown in Fig. 2, the unloaded response of concrete 
specimen seems to be weakened because the elastic stiff-
ness of the material appears to be damaged or degraded. 
The degradation of the elastic stiffness on the strain sof-
tening branch of the stress-strain curve is characterized 
by two damage variables, dt  and dc, which can take values 
from zero to one. Zero represents the undamaged mate-
rial where one represents total loss of strength (Abaqus 
User Manual, 2008). E0 is the initial (undamaged) elastic 
stiffness of the material and 𝜀𝑐

~𝑝𝑙
, 𝜀𝑡

~𝑝𝑙
,  𝜀𝑐

~𝑖𝑛 , 𝜀𝑡
~𝑖𝑛  are 

compressive plastic strain, tensile plastic strain, com-
pressive inelastic strain and tensile inelastic strain re-
spectively. The stress-strain relations under uniaxial 
tension and compression are taken into account in Eq. 
(1) and Eq. (2).  

𝜎𝑡  =  (1 − 𝑑𝑡) ∙ 𝐸0 ∙ (𝜀𝑡 − 𝜀𝑡
~𝑝𝑙

) , (1) 

𝜎𝑐  =  (1 − 𝑑𝑐) ∙ 𝐸0 ∙ (𝜀𝑐 − 𝜀𝑐
~𝑝𝑙

) . (2) 

Interface behavior between rebar and concrete is 
modeled by implementing tension stiffening in the con-
crete modeling to simulate load transfer across the 
cracks through the rebar. Tension stiffening also allows 
to model strain- softening behavior for cracked concrete. 
Thus it is necessary to define Tension stiffening in CDP 
model. ABAQUS allows us to specify Tension Stiffening 
by post failure stress-strain relation or by applying a 
fracture energy cracking criterion (Abaqus User Manual, 
2008).  

There is a mesh sensitivity problem when cracking 
failure in not distributed evenly. This phenomenon ex-
ists when there is no reinforcement in significant regions 
of the model. To overcome this unreasonable mesh sen-
sitivity problem Hillerborg’s (1976) fracture energy ap-
proach can be used instead of post failure stress-strain 
relation (Hillerborg et al., 1976). In this approach; the 
amount of energy (GF) which is required to open a unit 
area of crack is assumed as a material property. Thus; 
concrete’s brittle behavior is defined by stress-displace-
ment response rather than a stress-strain response. Spec-
ifying the post failure stress versus corresponding crack-
ing displacement is enough to describe this approach as 
shown in Fig. 3(a-b) (Abaqus User Manual, 2008). 

 

 

Fig. 3. Post failure stress-strain relation with fracture en-
ergy approach (Abaqus User Manual, 2008). 

As an alternative, GF can be implemented directly as a 
material property. However in this case, a linear loss of 
strength after cracking is assumed (Fig. 3(b)). From CDP 
perspective, ABAQUS automatically calculates both plas-
tic displacement values using the Eq. (3) and Eq. (4).   

𝑢𝑡
𝑝𝑙

 =  𝑢𝑡
𝑐𝑘 −

𝑑𝑡

(1−𝑑𝑡)

𝜎𝑡𝐼0

𝐸0
 , (3) 

𝜀𝑐
~𝑝𝑙

 =  𝜀𝑐
~𝑖𝑛 −

𝑑𝑐

(1−𝑑𝑐)
 

𝜎𝑐

𝐸0
 . (4) 

From these equations “effective” tensile and compres-
sive cohesion stresses (𝜎𝑡 , 𝜎𝑐) can be defined as:   

𝜎𝑡  =  
𝜎𝑡

(1−𝑑𝑡)
= 𝐸0(𝑢𝑡 − 𝑢𝑡

𝑝𝑙
) , (5) 

𝜎𝑐  =  
𝜎𝑐

(1−𝑑𝑐)
= 𝐸0(𝜀𝑐 − 𝜀𝑐

~𝑝𝑙
) . (6) 

The effective cohesion stresses determines the size of 
the yield (or failure) surface (see Fig. 4). In Abaqus the 
parameters required to define the yield surface consists 

(a) 

(b) 

(a) 

(b) 
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of four constitutive parameters. The Poisson’s ratio con-
trols the volume changes of concrete for stresses below 
the critical value which is the onset of inelastic behavior. 
Once the critical stress value is reached concrete exhibits 
an increase in plastic volume under pressure (Chen, 
1982). This behavior is taken into account by defining a 
parameter called the angle of dilation. In CDP model ψ is 
the dilation angle measured in the p-q plane at high con-
fining pressure and in this study it is determined with 
sensitivity analysis. ϵ is an eccentricity of the plastic po-
tential surface with default value of 0.1. The ratio of ini-
tial biaxial compressive yield stress to initial uniaxial 
compressive yield stress, σb0/σc0, with default value of 
1.16. Finally Kc is the ratio of the second stress invariant 
on the tensile meridian to compressive meridian at ini-
tial yield with default value of 2/3 (Abaqus User Manual, 
2008). The parameter Kc should be defined based on the 
full triaxial tests of concrete, moreover biaxial labora-
tory test is necessary to define the value of σb0/σc0. This 
paper does not discuss the identification procedure for 
parameters ϵ, σb0/σc0, and Kc because tests that are going 
to be verified in this study do not have such information. 
Thus, default values are accepted in this study. 

 

Fig. 4. Biaxial yield surface in CDP Model (Abaqus User 
Manual, 2008). 

2.1.1. Uniaxial tension and compression stress behavior of 

test model 

 
Since the compression and tension stress behavior of 

the experimental test specimens are not reported these 
relations are created by using mathematical models 
from literature. The compressive behavior of concrete is 
obtained by employing Hognestad probala along with 
linear descending branch. However the crushing of con-
crete is affected by the closed stirrups and some modifi-
cations are made for concrete in compression according 
to CEB-FIP MC90 (Fig. 5(a)) (CEB-FIB, 1993). Equation 
of the parabola is shown in Eq. (7) where σ is the com-
pressive stress, fcu is ultimate compressive stress, c* is 
the peak compressive strain, E is the elastic modulus and 
fc* is the modified compressive strength. Details of this 
model can be found in Arduini et al., 1997. 

𝜎 =  𝑓𝑐
∗ (

2𝜀

𝜀
− [

𝜀

𝜀𝑐
∗]

2

) . (7) 

 

 

Fig. 5. Stress-strain behavior of concrete under uniaxial 
compression and tension a) Hognestad concrete com-

pressive behavior b) Bilinear tensile behavior. 

For tensile behavior of concrete, bilinear model is 
adopted as plotted in Fig. 5(b) (Coronado and Lopez, 
2006). Crack opening (wc) is calculated as a ratio of the 
total external energy supply (GF) per unit area required 
to create, propagate and fully break a Mode I crack in 
concrete. However; Mode I tensile fracture energy of 
concrete is defined as a function of the concrete com-
pressive strength, fc*, in CEB-FIP MC90 (CEB-FIB, 1993) 
as shown in Eq. (8). In this equation Gfo is a coefficient 
related to the maximum aggregate size (dmax). Several 
values are given in Table 1.  

𝐺𝐹 =  𝐺𝑓𝑜 (
𝑓𝑐

∗

10
)

0.7

 . (8) 

Table 1. Aggregate size-based fracture coefficients 
(Rots, 1988). 

Maximum aggregate size 

dmax (mm) 

Coefficient 

Gfo (J/m2) 

8 25 

16 30 

32 58 

 

Thus, uniaxial tension and compression stress behav-
ior are defined by using above mathematical models. 
These mathematical models are not enough to define 
CDP model. As mentioned above damage parameters are 
required to specify the CDP model. But these damage pa-
rameters are not reported for the experiments that are 
going to be verified in this study. Most of the reinforced 
concrete flexural test reports in the literature are also 

(a) 

(b) 
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missing this information. Because to define these dam-
age parameters, some laboratory tests in material level 
should be done in advance. In this study damage param-
eter for concrete compressive behavior is obtained from 
a verification problem given in ABAQUS verification 
manual. By applying curve fitting method to this example 
a third degree polynomial curve as in Eq. (9) is obtained 
for this corresponding damage parameter (Fig.  6(a)). 
Then the very same equation is applied to get the dam-
age parameter for the test cases that are going to be ver-
ified in this study. Also tension damage parameter is ob-
tained by following the same behavior of example mate-
rial given in ABAQUS verification manual (Fig. 6(b)).   

𝑦 = 2𝐸 + 0.6𝑥3 − 41740𝑥2 + 324. 𝑥 + 0.0052 . (9) 

   

 

Fig. 6. Compression and tension damage parameters 
used in the models a) Compression damage parameter  

b) Tension damage parameter. 

2.2. Uniaxial tension behavior of steel 

The stress–strain curve of the reinforcing bar is as-
sumed to be elastic perfectly plastic as shown in Fig. 7.  In 
this model material yields under constant load. The pa-
rameters needed to specify this behavior are the modulus 
of elasticity (Es), poisson ratio () and yield stress (fy). 

 

3. Verification Test Group 

Developing the finite element model strategies for re-
inforced concrete beam is verified by the experiment 
studies. A total of 3 beams with different mechanical 

properties from different researchers, were selected for 
verification purpose. All the beams are tested under four 
point load. Test layout and material properties for each 
experiment are given in Figure 8 and Table 2. All the de-
tails of Test Case 1, Test Case 2, and Test Case 3 can be 
found in Arduini et al. (1997), Benjeddou et al. (2007) 
and Sharif et al. (1994) respectively. 

 
Fig. 7. Elastic perfectly plastic model for steel reinforcing 

bars. 

 
Test Case 1 

  
Test Case 2 

  
Test Case 3 

Fig. 8. Layout of test beam (dimensions are mm). 

4. Finite Element Modeling 

The non-linear finite element software package, 
ABAQUS, is employed for numerical analysis. Since there 
is no computational expense all the beams are modeled 
with full geometry in 2 dimensions (Fig. 9). Steel bars are 
embedded in concrete with the same degrees of freedom 
which also means that there is a perfect bond between 
concrete and steel. The advantage of the embedded 
model is that it allows independent choice of the con-
crete mesh. Concrete is modeled by using four-noded 
plain strain element with reduced integration formula-
tion. Since first order elements use linear interpolation 
to obtain nodal displacements, the edges of these ele-
ments are unable to curve under bending resulting in 

y = 2E+06x3 - 41740x2 + 324.24x + 0.0052
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shear rather than bending deformation. This phenome-
non is known as shear locking (Abaqus User Manual, 
2008). To overcome this problem element with reduced 
integration formula is employed. All the beams are 

loaded by displacement control in the vertical direction. 
Finite element members and typical finite element mesh 
geometry employed in this study can be seen in Table 3 
and Fig. 9.

Table 2. Material properties of test beams. 

Test 

Case 

Beam 

Ref. No 

Width, Height, Shear 

span (mm) 

E 

(GPa) 

 

(-) 

fc' 

(MPa) 

fy (Rebar) 

(MPa) 

ft 

(MPa) 

dmax 

(mm) 

1 A1 200-200-2000 25 0.2 33 400 2.6 - 

2 CB1 120-150-1800 30 - 21 400 1.8 16 

3 P1 150-150-1180 27 - 37.7 450 - - 

Table 3. Finite element types. 

Material Description Code Additional information 

Concrete Four-noded plain strain CPE4R Reduced integration 

Steel Two-noded truss T2D2 Embedded 

 

Fig. 9. Typical finite element mesh of numerical models.

5. Results and Discussions 

5.1. Test Case 1 (Arduini et al., 1997) 

It is clear that, the finite element simulation is very ca-
pable of capturing the experimentally observed loading 
trends and magnitudes for the entire loading range. For 
this test case, models with finer mesh captures the test re-
sult better than the models with course mesh (Fig. 10(a)). 
The best result is obtained with 50 mm mesh. The value 
for dilation angle for reinforced concrete in literature is 

given as 30° (Lubliner et al., 1989). Based on this infor-
mation angle of dilation is varied to see the sensitivity of 
the results against it. Plots show that the results are not 
varying dramatically as the dilation angle changes (Fig. 
10(b)). The best result is observed at 37°. As discussed be-
fore GF depends on the diameter of aggregate (Eq. (8)). 
Since the aggregate diameter is not reported in test report 
this value is also changed to see how it affects the results. 
With the best results obtained from both mesh sensitivity 
and the dilation angle analysis, GF is calculated for differ-
ent aggregate diameter and result are plotted in Fig. 10(c).

     
 a) Mesh sensitivity b) Dilation angle sensitivity c) Fracture energy sensitivity 

Fig. 10. Numerical results for Test Case 1. 
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5.2. Test Case 2 (Benjeddou et al., 2007) 

Similar results are also observed in this test case. 
However; models with finer mesh has more rigid behav-
ior than models with course mesh. But still the difference 
is in the acceptable range. Also 50 mm mesh gives the 
best results as in Test Case 1 (Fig. 11(a)). Since it is found 

that the models are not dilation angle sensitive, in this 
model values for dilation angles are changed into 30° 
and 50° to seek for further different values. But still it is 
found that the behavior can be captured within the range 
of the dilation angle value reported in the literature (Fig. 
11(b)). Also it is clear from this test case that modeling 
is not very sensitive to GF value (Fig. 11(c)).

     
 a) Mesh sensitivity b) Dilation angle sensitivity c) Fracture energy sensitivity 

Fig. 11. Numerical results for Test Case 2.

5.3. Test Case 3 (Sharif et al., 1994) 

This test case gives different results from other test 
cases. In this model some of the material properties are 
not reported in the test report. For example; ft value is 
not reported in the test report. ft value is calculated ac-
cording to ACI (ACI 318, 1999). Unreported critical val-
ues such as elastic modulus, fc and ft change the results 
dramatically. But still the finite element simulation is 
capable of capturing the loading trends. In this case 

mesh with 25 mm captures the results of the experi-
ment (Fig. 12(a)). But mesh with 50 mm model gives 
unrealistic results. Authors think that this is much re-
lated to the unreported diameter value of aggregate. 
Because in this case, the results are also very sensitive 
to GF unlike other cases (Fig. 12(c)). The mesh should 
be selected with a dimension that should include the 
continuum properties of the material. Dilation angle of 
30° captures the best results in this test case (Fig. 
12(b)).

     
 a) Mesh sensitivity b) Dilation angle sensitivity c) Fracture energy sensitivity 

Fig. 12. Numerical results for Test Case 3.

Table 4 compares the experimental yield loads and 
deflections with those obtained from the finite element 
analysis for three test cases. As can be seen in Table 4, 
the predicted yield load and deflections for Test Case 1 
and Test Case 2 is nearly same with experimental results. 

However, yield load is %7 higher than experimental 
result for the Test Case 3. According to these results, 
proposed finite-element model proves its capability to 
accurately predict the load–deflection relationships of 
the reinforced concrete beams.             
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Table 4. Comparison of results. 

 

Test Case 1 

 

Test Case 2 

 

Test Case 3 

Yield Load 

(kN) 

Deflection 

(mm) 

Yield Load 

(kN) 

Deflection 

(mm) 

Yield Load 

(kN) 

Deflection 

(mm) 

Experiment 70 13.65  21.2 10  40 5.93 

Finite Element 70.9 13.64  21.4 9.4  42.8 5.95 

Numeric/Experiment 1.01 1.00  1.00 0.94  1.07 1.00 

 
 

6. Conclusions 

Three different experimental tests are verified by us-
ing modeling strategies explained in the previous sec-
tions. Results show that experimentally observed load-
ing trends and magnitudes for entire loading range of RC 
beams can be captured by employing CDP modeling ap-
proach. Basically mesh density, dilation angle and con-
crete fracture energy are calibrated to develop modeling 
strategies. It is obvious that if material properties and 
geometrical information about real test are given in de-
tail then numerical models give better results than those 
with missing information. Also this study proves that de-
fining damage parameters for compression behavior 
with proposed equation gives satisfactory results. But 
this equation can be improved with real test results for 
further investigations. 
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